Community analysis in dynamic social networks
نویسنده
چکیده
Due to the growing popularity of social networking platforms, the analysis of online communities became in recent years a popular topic in different research fields. However, an aspect that has received only little attention is how the temporal aspects of social networks can be studied. This thesis bridges the gap and deals with the analysis of community structures in large social networks and their temporal dynamics. Two clustering techniques are proposed to detect communities in social networks and to study the evolution of these structures over time. The two approaches basically differ in the underlying definition of what constitutes a community over time: In the first case, a community is considered a subgroup that can be observed over time and a hierarchical edge betweenness clustering approach is proposed to detect such communities. In the second case, a community is defined as a subgroup that evolves over time and an incremental density-based clustering algorithm is proposed to detect and track these evolving communities. The applicability of the proposed approaches is evaluated by applying them to different real world data sets. The obtained results indicate that the introduced clustering techniques are appropriate to efficiently detect online communities in large social networks and to track their evolution over time.
منابع مشابه
Overlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملتشخیص اجتماعات ترکیبی در شبکههای اجتماعی
One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...
متن کاملCommunity Detection Approaches in Real World Networks: A Survey and Classification
Online social networks have been continuously evolving and one of their prominent features is the evolution of communities which can be characterized as a group of people who share a common relationship among themselves. Earlier studies on social network analysis focused on static network structures rather than dynamic processes, however, with the passage of time, the networks have also evolved...
متن کاملUse of Virtual Social Networks by Adolescents in Zanjan, Iran (2016-2017)
Background: Virtual social networks are the most important communication tools in the modern era, which have gained remarkable popularity in various communities. The use of social networks by different age groups has been on the rise, especially among adolescents. Objectives: The present study aimed to assess adaptation to motherhood and its influential factors in the first year postpartum in ...
متن کاملDetecting Community Structure in Dynamic Social Networks Using the Concept of Leadership
Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture ...
متن کامل